If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2+3g=18
We move all terms to the left:
g^2+3g-(18)=0
a = 1; b = 3; c = -18;
Δ = b2-4ac
Δ = 32-4·1·(-18)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-9}{2*1}=\frac{-12}{2} =-6 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+9}{2*1}=\frac{6}{2} =3 $
| 8q-5=5q+37 | | 6.11a−(−3.75)=6.11a, | | -4x+7x-16=3(x-4)-30 | | (2x+29)36=211 | | (2x+22)+90+(3x+43)=180 | | 2x+3x=47 | | 3x2+x-86=-6 | | (2x+21)22=227 | | 9x-3+x=25+3x | | 3a2-27=0 | | 3(2n+5)=4n+21 | | (2x+39)+(4x-15)+90=180 | | 305p=1525p= | | a2-20a-101=-5 | | -40-2x-5=-62 | | 4.5x=150 | | -40-2x+5=61 | | x+3x+8=2x+10 | | 3x+32=4x-8+7x | | 1/4=³/5s | | x³+9x=1/2(18x+54) | | 28-5x=4x+14-2x | | 1/4=c/4 | | 1x+26-10x=-1 | | (5x+5)+(2x-9)+90=180 | | y/5+7=19 | | 13+2(x-6=4x-7 | | 19-5x+3x=4+3x | | 12=5n-3 | | 4p+6=50 | | -15=-3(x-9 | | 7x+3-2x=11+x |